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Shape fluctuations of a deformable body in a randomly stirred host fluid

Gad Frenkel and Moshe Schwartz
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 699
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We consider a deformable body immersed in an incompressible fluid that is randomly stirred. Sticking to
physical situations in which the body departs only slightly from its spherical shape, we investigate the defor-
mations of the body. The shape is decomposed into spherical harmonic modes. We study the correlations of
these modes for a general class of random flows that include, as a special case, the flow due to thermal
agitation. Our results are general, in the sense that they are applicable to a large class of deformable bodies
with energy that depends only on the shape of the body, and a general class of random flows.
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I. INTRODUCTION

In recent years we have witnessed a dramatic increas
the volume of research of deformable objects in a host liq
@1–13#. The immersed objects that are of scientific or indu
trial interest are very diverse, giving rise to a large numbe
subfields. The objects can be bulk objects, like droplets o
different liquid @11–16# or elastic colloidal particles@17,18#,
or they can be membranes separating various regions o
host liquid @19#. Membranes can be categorized as liqu
membranes@1,5,11,12,20# or elastic membranes@21–23#.
Liquid membranes are characterized by an energy that
pends only on the shape of the membrane and liquid pro
ties on the surface of the membrane like the local density
the membrane molecules@2,20,24#. Elastic membranes ar
characterized by additional fields like tangential strains,
While the description of the immersed objects is very d
tailed, the description of the host liquid is usually restrict
to properties like viscosity and temperature@1,3,9,12,13,19#.
The effect of temperature on diffusion and fluctuations of
deformations has been studied in numerous artic
@1,3,10,12,13,19,25#, giving the diffusion constant and corre
lations of the deformations of a single deformable body
equal times and at a general time separation. The effec
temperature has been recently studied even for the cas
objects that are stretched by external shear@11#. While the
effect of thermal agitation on deformable objects in solut
is obviously very important, it is certainly not the only wa
in which the host liquid may be agitated. Clearly, in indu
trial and biological environments, the host liquid can
stirred, vibrated, pumped, etc. For instance, Wu and Lib
aber have studied the effect of bacteria motion on the di
sion of small beads and have suggested that the sourc
the Brownian-like motion is the collective motion of the ba
teria @26#. Further, nanoscale mechanical fluctuations of
red blood cell surface have been measured and show
depend strongly on the biochemical environment and
only on temperature@27–30#. In fact, in many cases the re
sulting agitation is much more important to the behavior
the deformable objects than thermal agitation. The purp
of the present paper is to contribute to the understandin
such more general systems by viewing them in a unified w
such that the case of thermal agitation will be shown to
1063-651X/2003/68~6!/061202~9!/$20.00 68 0612
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just a particular case and will be worked out as an exam
of the general approach.

Clearly, the actual treatment of a system of many intera
ing objects is extremely difficult. This is because such a s
tem is not just a many-body system of objects interacting
the hydrodynamic interactions, but each object is charac
ized by an infinite number of degrees of freedom, cor
sponding to its possible deformations. All of these deform
tions interact. The problem is somewhat simplified if t
deformation of the objects from spherical shape rema
small and the fluid is in the linear regime, as in the case
the Stokes approximation to the Navier-Stokes equation.

Our final goal is to obtain the response of the compos
system, of deformable interacting objects, to a given veloc
field imposed on the liquid. The velocity field we have
mind may be fixed in time, like simple shear, or random
fluctuating in time and space. Even in the first case the
locity field each object experiences must have a random p
due to the random passage of other objects nearby. There
effects of random flow are important to the understanding
such systems. First we wish to know the response of a sin
deformable object to a general random velocity field. On
the response of a single object is known, we can obtain
response of the full, many-body system, by using the
sponse of each body as a source of an additional velo
field. In a former paper@10# we studied the motion of the
center of a deformable object in the presence of a rand
flow and derived its mean-squared displacement~MSD!. In
this paper, we investigate the deformation degrees of fr
dom, completing thus the description of the response o
single object to a random velocity field. Decomposing t
deformation into spherical harmonic modes, we consider
correlations between deformation modes. We find, am
other things, that different modes are decoupled and that
correlation function does not depend on the parameterm of
the Yl ,m spherical harmonic~following from spherical sym-
metry!. We also obtain a method to calculate these corre
tions as a function of time, build typical drop shapes fro
the correlation functions, and discuss several interes
cases.

The plan of this paper is as follows: In Sec. II we descri
the system we have in mind and formulate the basic eq
tions. In Sec. III we introduce the deformation coefficien
and obtain their correlations for the simple case where
©2003 The American Physical Society02-1
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G. FRENKEL AND M. SCHWARTZ PHYSICAL REVIEW E68, 061202 ~2003!
external velocity is uncorrelated in time. General correlat
functions are considered in Sec. IV. We obtain the deform
tion correlations and simplify them for equal times. An alg
rithm for numerical computation of the correlations in t
general case is described in the Appendix.

II. SYSTEM

Consider a single deformable body immersed in a h
fluid.

~i! The deformable body is fluid, in the sense that t
velocity field is well defined everywhere~both inside and
outside the body!. Each surface element moves with the v
locity of the flow at its position:

rẆ5vW ~rW !. ~1!

~ii ! Both the body and the host fluid are incompressib
¹W •vW 50.

~iii ! The body is characterized by an energy that depe
on its shape~i.e., changing the orientation or switchin
places of two surface particles while keeping the shape c
stant does not change the energy!. The energy may be sur
face tension energy@31#, Helfrich bending energy@20,24#,
etc. The shape of minimum energy is a sphere. Deforma
of the shape changes the energy, exerts a force density o
liquid, and therefore generates an additional velocity fie
denoted byvW c .

~iv! We investigate the regime where the hydrodynam
equations are linear in the velocity~i.e., a velocity field in-
duced by several sources is equal to the sum of the velo
fields that each source induces separately!. For instance, if
the flow is governed by the Navier-Stokes equation, then
assumption implies that the Reynolds number is small
that the Stokes approximation is applicable. The linea
implies that in our system the actual velocity field is the s
of the imposed velocity fieldvW ext ~the velocity field that
would have existed if the body was absent!, and the velocity
field induced by the deformations,vW c ,

vW 5vW ext1vW c . ~2!

~v! We consider cases in which the external velocity fie
is random, with zero average. The velocity correlation fu
tion is known and depends only on distance and time dif
ence. We also assume that the external velocity is sm
enough to allow the body to remain almost spherical.

III. DEFORMATIONS UNDER WHITE NOISE FLOW

Consider a spherical body which is slightly deformed. T
equation

r

R
1 f ~V,t !2150 ~3!

defines its surface, yielding for each spatial directionV the
distance,r[urW2rW0u, of the surface from the center of th
body rW0 . R is the radius of the undeformed sphere. The
formation functionf (V,t) defines the shape. The deform
06120
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tion function is decomposed into spherical harmoni
f (V,t)5( l 51

` (m52 l
l f lm(t)Ylm(V) ~clearly theY00 term can

be absorbed in the definition ofR). Our goal is to obtain the
correlations between the deformation coefficientsf lm(t).

The center of the bodyrW0 is chosen to be the point aroun
which the deformation coefficients withl 51 vanish: f 1m
50. A different definition of the center will introduce thre
additional equations for the deformation coefficients w
l 51. We are not interested in those since in the first or
the spherical harmonics withl 51 describe a translation o
the body@10,14,2#. Let c(rW) be a three-dimensional scala
field, defined everywhere in such a way that the equat
c(rW)50 describes the surface of the body@2,5#. The gradient
of c is assumed to exist and not to vanish in the vicinity
c(rW)50. Straightforward manipulation of Eq.~1! gives rise
to a continuity equation forc, presented here in a coordina
system that moves with the center of the body:

ċ1vW c•¹W c52~vW ext2rẆ0!•¹W c. ~4!

Assuming thatuvW ext2rẆ0u is small on the surface and expres
ing the fieldc in the vicinity of the surface as

c5
r

R
1 f ~V,t !21, ~5!

the right-hand side of Eq.~4! is equal, in the first order, to

Q[(1/R)$r̂•@vW ext2rW0
˙ #% ~see Ref.@2#!, where r̂ is a unit

vector directed outwards from the center of the body. Sin
the minimum energy of the body is obtained for a spheri
shape, the velocity induced by the body is zero when
sphere is undeformed. Therefore the leading order of
velocity vW c must be, in general, a linear functional of th
deformation f (V,t). The term vW c•¹W c is obtained in the
leading order by taking¹W c on the original sphere andvW c to
first order in the deformation. Using Eq.~5! for c, the ge-
neric equation for the deformation coefficientf lm must be of
the form

] f lm~ t !

]t
1l l f lm~ t !52Qlm~ t !, ~6!

whereQlm is given by

Qlm5
1

RE dV$r̂•@vW ext2rẆ0#Yl ,m* ~V!% ~7!

and vW ext is evaluated on the undeformed body in the dire
tion of the spatial angleV ~for further details, see Ref.@10#!.
The above equation is a nonhomogeneous linear equa
where the nonhomogeneity is due to the random driving
ternal flow. The homogeneous part of the equation does
depend on the external flow and represents the decay o
formations in the absence of external flow. Therefore ther
no system of coordinates that may be preferred over oth
~even locally at a given point in space and time!. This is the
reason that the decay eigenvaluesl l depend only onl and
not onm. Otherwise the decay of a given shape depends
2-2
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SHAPE FLUCTUATIONS OF A DEFORMABLE BODY IN . . . PHYSICAL REVIEW E68, 061202 ~2003!
a choice of coordinates and this is impossible. An import
point to notice is that different physical deformable objec
obeying the conditions outlined in Sec. II, differ only in th
l l ’s.

It is convenient to write the correlation function of th
external velocity field in momentum space. This is so b
cause the random velocity field is transversal when the fl
is incompressible. Consequently, in real space, the flow m
always be correlated in a very complex way. On the ot
hand, in momentum space we can simply use a projec
operator on the transversal part of a general field:

ṽexti
~qW ![(

j
S d i j 2

qiqj

q2 D uj~qW !, ~8!

whereuW is a general vector field and the bracketed term
the projection operator that removes the longitudinal par
uW , and therefore yields a general transversal velocity fi

vW̃ ext . Next, the correlations of the external velocity are eas
expressed using the correlations of the general fielduW . We
are interested in cases were the system is statistically iso
pic, homogeneous, and stationary. In these cases, the ge
field must obey:

^ul~qW ,t1!um~pW ,t2!&5d lmd~qW 1pW !f~q,t22t1!, ~9!

whered lm is the Kronecker delta,d is the Dirac delta func-
tion, andf is a general function ofq and the time difference
In addition we assume that

^ul~qW ,t !&50. ~10!

In the rest of this section we consider a frequently used fa
ily of random flows in which the external velocity is unco
related in time,

f~q,t22t1!5f̃~q!d~ t22t1!. ~11!

Clearly, any random process of physical origin cannot h
strict d function correlations. Equation~11! above is a rea-
sonable approximation for systems in which the decay tim
of the velocity correlations are much shorter than the de
times of the deformations, 1/l l . In fact, even a weaker re
striction suffices. Fourier components of the velocity fie
with wave vectorqW ,vW qW , obeyingqR!1 are not relevant for
the description of the deformation of the shape because
correspond to variations over length scales much larger
the size of the deformable object. Therefore it is enough
theq-dependent decay times of the correlations involvingvW qW
andvW 2qW are short compared to the decay times of the de
mations only forqR.1. In these systems we can replace t
exact correlation details with the effective delta function t
strength of which is obtained by integrating the true corre
tion over time.

Transforming, we can calculate the correlation of the
locity at two points on the sphere, that are characterized
the directionsr̂ and r 8̂ relative to the center. This yields
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^vext
i ~rW,t1!vext

j ~rW8,t2!&5E dqW e2 iqW •(rW2rW8)Fd i j 2
qiqj

q2 G
3f̃~q!d~ t22t1!, ~12!

where vW ext(rW,t) is the velocity at timet at placerW on the
surface andrW[rW0(t)1Rr̂. The average and correlations o
Qlm follow easily from the previous equations. The avera

of Qlm is zero. The termr̂•rẆ0, in Eq.~7!, does not contribute
to any component ofQlm except for those withl 51. In
addition, the centerrW0 has been chosen to be the point arou
which the three deformation coefficientsf lm with l 51 are

equal to zero. ThereforeQ1m is zero, and for any otherl, rẆ0
can be dropped out of the expression forQlm .

Straightforward calculation of theQlm correlations, using
its definition, Eq.~7!, and the velocity correlations, Eqs.~8!–
~11!, yields

^Qlm~ t1!Ql 8m8~ t2!&5Ql l 8mm8d~ t22t1!, ~13!

where

Ql l 8mm8[
1

R2E dVE dV8E d3qYlm* ~V!Yl 8m8
* ~V8!

3 (
i , j 5x,y,z

F r̂ i r̂ j8e
2 iqW •( r̂ 2 r̂ 8)RS d i j 2

qiqj

q2 D f̃~q!G .

~14!

The spherical symmetry of the system implies that only
the terms for whichl 85 l andm852m differ from zero, and
those terms do not depend onm. Hence

Ql l 8mm85Ql l 00d l 8,ldm8,2m . ~15!

The correlations of the deformation coefficientsf lm are ob-
tained, using Eq.~6! and the correlations ofQlm , by direct
integration,

lim
t→`

^ f lm~ t ! f l 8m8~ t1Dt !&

5E
2`

0

dt1E
2`

Dt

dt2@^Qlm~ t1!Ql 8m8~ t2!&el l t11l l 8(t22Dt)#,

~16!

where the limitt→` is taken to avoid the initial conditions
of the deformation.

Finally, Eqs.~13!, ~15!, and~16! yield

^ f lm~ t ! f l 8m8~ t1Dt !& t→`5Ql l 00

e2l l uDtu

2l l
d l 8,ldm8,2m .

~17!

For equal times,Dt50, these correlations, that are just th
variances of thef lm , are important because they contain t
full statistical information about possible shapes of the o
jects. In Fig. 1 these correlations are used to generate typ
2-3
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FIG. 1. A typical realization of
a deformable body subjected to
random flow of the formf(q)
5Cd(qj21)d(t) with ~A! R
52j, ~B! R54j, ~C! R56j, and
~D! R58j.
do
e
th
ra
e
s

i-
-

a

re

by

re
r

e

io

use

he
a-
in
nt
the

ity

ing
-
on.
in
he

al
shapes of droplets governed by surface tension and ran
flow given byf(q,t)5Cd(jq21)d(t). As can be seen, th
surface of the body develops bumps. It is obvious that
typical size of these surface features depends on the
m15R/j. As m1 increases, different surface elements b
come less and less correlated. Therefore, we expect to
features of smaller size~which correspond, clearly, to spher
cal harmonics of higher order!. The smallest features corre
spond to deformation coefficients withl .m1 ~or l 52 if
m1<2). Figures 2 and 3 depict equal time correlations
function of l for two correlation functions of the form
f̃(q)5Cq2aG(jq), wherea562, G is a function that has
a cutoff atjq51 andj is the decay length scale. There a
two independent dimensionless parameters,m15R/j and
m25C/(R52a l l

min, wherel l
min is the minimal value of the

l l ’s ( l 52•••`). In the case of a body characterized
surface tension energy,l l}l/hR wherel is the surface ten-
sion andh is the viscosity. We varym1 andm2 by keeping
j51 andCh/l51 and changingR. As can be seen, there a
two possibilities: either thel 52 term dominates the curve o
there is a maximum atl 0'R/j. It is easy to see that th
decay forl @ l 0 is exponential. This suggests that there is
cutoff on the deformation coefficients at which the expans
06120
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can be terminated and therefore that the expansion we
here will be useful for systems in whichm1 is small. The
correlation functions depicted in Fig. 3 correspond, in t
limit R/j!1, to velocity correlations due to thermal agit
tion. Due to the importance of that problem we work out
the following a full analytic derivation of the time-depende
shape correlations. Such correlations were obtained in
past by various methods~e.g., equipartition of energy, Kirk-
wood equation, etc.!. In a previous paper@10# we have
shown that the correlation function for the external veloc
due to thermal agitation has the formf(q,t)
5@KBT/(2p)3h#@d(t)/q2#, whereh is the viscosity of the
fluid ~notice that this holds forqj!1 wherej is of the order
of the intermolecular distance. ForR/j@1 it is easy to show
that the cutoff onq can be ignored!. It is important to note
that our velocity correlations are not obtained by match
our general result, Eq.~14!, with previous results on corre
lations of deformations in the presence of thermal agitati
Indeed, we obtain the equilibrium velocity correlations
Ref. @10# from a general argument not related at all to t
problem of deformable objects. We substitute the therm
velocity correlation given above into Eq.~14! and using the
dimensionless parameteryW5qW R we obtain
2-4



e
d

la-

sion

a

e
for
ac-

ns

f

f

i-

SHAPE FLUCTUATIONS OF A DEFORMABLE BODY IN . . . PHYSICAL REVIEW E68, 061202 ~2003!
Ql lm,2m

[ (
i , j 5x,y,z

1

R2E dVE dV8Ylm* ~V!Yl ,2m* ~V8! r̂ i r̂ j8Ai j ,

~18!

where

Ai j 5
1

RE dVyE y2dye2yW•( r̂ 2 r̂ 8)Fd i j 2
yiyj

y2 G S KBT

~2p!3h

1

y2D .

~19!

We rotate they coordinate system in such a way that itsẑ
axis is in the direction of (r̂ 2 r̂ 8). Furthermore, we use th
fact that*2`

` dy exp(2iyx)52pd(x) and calculate the rotate
tensor,

Ãi j 5
p2

Ru r̂ 2 r̂ 8u
S KBT

~2p!3h
D ~11d i ,z̃!d i , j . ~20!

Rotating the axes back we find that

(
i , j

r̂ i r̂ j8Ai j 5
p2

Ru r̂ 2 r̂ 8u
S KBT

~2p!3h
D

3F r̂ • r̂ 81
r̂ •~ r̂ 2 r̂ 8!

u r̂ 2 r̂ 8u

r̂ 8•~ r̂ 2 r̂ 8!

u r̂ 2 r̂ 8u
G

5
p2

2R S KBT

~2p!3h
D 3 cosg21

A2A12cosg
, ~21!

FIG. 2. The correlation of the deformation coefficientsf lm as a

function of integerl, for f(q)5Cq2e2q2j2
and several values o

R/j (G0[m2). In the figure, # denotes points whereR/j51/2 and
R/j51 have the same value. x denote points whereR/j51/2,1,2
values coincide.
06120
whereg is the angle betweenr̂ and r̂ 8. Next, we develop
1/A12cosg in Legendre polynomials, use recurrence re
tions and the addition theorem

Pl@cos~u!#5
4p

2l 11 (
m52 l

l

~21!mYlm~V!Yl 2m~V8!,

~22!

and find

Ql lm,2m5
2KBT

hR3

~ l 11!l

~2l 21!~2l 11!~2l 13!
. ~23!

For a deformable body governed by surface tension@2#,

l l5
l

4hR

~ l 12!~ l 11!l ~ l 21!

~ l 1 3
2 !~ l 1 1

2 !~ l 2 1
2 !

. ~24!

Therefore, in the case of a body governed by surface ten
under thermal agitation, Eqs.~17!, ~23!, and~24! imply that
the correlations of the deformations are given by

^ f lm~ t ! f l 8m8~ t1Dt !&

5
KBT

lR2

1

~ l 21!~ l 12!
e2l l uDtud l 8,ldm8,2m . ~25!

Schwartz and Edwards@6# considered the special case of
deformable body in equilibrium at temperatureT, using the
Kirkwood equation. They found identical correlations in th
deformations. That derivation, however, has been tailored
thermal agitation and cannot be generalized to take into
count any other type of correlations in the host fluid.

So far we have shown how to implement Eq.~17! for
flows that are uncorrelated in time to obtain the correlatio

FIG. 3. The correlation of the deformation coefficientsf lm as a

function of integerl, for f(q)5Cq22e2q2j2
and several values o

R/j. ~The values are given above each corresponding line.! Note
that for R@j the curves coincide with the curves for thermal ag
tation (G0[m2).
2-5
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in the deformations of the shape. In the following we gen
alize to correlations that are not instantaneous in time.

IV. GENERAL NOISE

In many cases white noise correlations are not suffic
to describe what really happens in the liquid, especially if
correlation time is of the order of other time paramete
Such is the case of a system of many droplets immersed
host fluid. The random flow a droplet is subjected to resu
from the random motion and deformation of other dropl
that pass nearby. It is obvious that in this case the appr
mation of the flow to be uncorrelated in time is not justifie
Hence we need to generalize our description.

Suppose thatf(q,Dt) is a general function ofq and the
time differencesDt. The correlations of the external velocit
are now extended in time. In order to calculate averages
the droplet at different times, we must now consider also
motion of the droplet. The definition ofQlm , Eq.~7!, implies
that the correlations of the normal component of the exte
velocity field on the sphere~that to first order of the defor
mation is an adequate approximation of the external velo
field on the surface of the body! are

^Qlm~ t1!Ql 8m8~ t2!&

5
1

R2E dVE dV8Ylm* ~V!Yl 8m8
* ~V8!

3 (
i , j 5x,y,z

@ r̂ i r̂ j8^vext
i ~ r̂ ,t1!vext

j ~ r̂ 8,t2!&#. ~26!

The correlation of the velocity at two points on the dropl
located in the directionsr̂ and r̂ 8 and measured at differen
times, obviously depends on the displacement of the ce
DrW0. We first calculate the correlation for a general displa
ment of the center and then average the result accordin
the probability of finding the center at each point. To do th
we first express the velocity correlations by means of
Fourier transform of the velocity, use Eqs.~8! and ~9!, and
obtain

^vext
i ~ r̂ ,t1!vext

j ~ r̂ 8,t2!&

5E P~DrW0!d~DrW0!E d3qe2 iqW •„DrW01R( r̂ 2 r̂ 8)…

3S d i j 2
qiqj

q2 D f~q,Dt !, ~27!

where DrW05rW0(t1)2rW0(t2), Dt5t22t1 , P(Dr 0) is the
probability that the center will be displaced byDrW0 in the
period ofDt.

It is obvious now that averaging over the center displa
ments will affect only the term2 iqW •DrW0 in the exponent
since this is the only term that depends onDrW0. Conse-
quently,
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^vext
i ~ r̂ ,t1!vext

j ~ r̂ 8,t2!&5E d3q^e2 iqW •DrW0&e2 iqW •( r̂ 2 r̂ 8)R

3S d i j 2
qiqj

q2 D f~q,Dt !. ~28!

Assuming Gaussian distribution of the displacements of
center,

^e2 iqW •DrW0&5e2(q2/6)^(DrW0)2&. ~29!

In a previous paper@10#, we considered the mean-squar
displacement~MSD! of the center of a deformable body in
flow that is correlated in a general way. We found that t
MSD in a period of timeDt obeys the equation

F~Dt !516pE
0

Dt

dt8E
0

`

e2(q2/6)F(t8)f~q,t8!

3@ j 0~qR!1 j 2~qR!#2~Dt2t8!q2dq, ~30!

where F(Dt)[^(DrW0)2& and j n(x) is the spherical Besse
function of ordern. Therefore the correlation of the extern
velocity at two points on the surface, characterized by
directionsr̂ and r̂ 8, measured at two different times with
time gap ofDt, is given by

^vext
i ~ r̂ ,t1!vext

j ~ r̂ 8,t2!&5E d3qe2(q2/6)F(Dt)e2 iqW •( r̂ 2 r̂ 8)R

3S d i j 2
qiqj

q2 D f~q,Dt !. ~31!

Equations~30! and ~31! enable us to calculate the correl
tions of Qlm @Eq. ~26!#. Again, spherical symmetry implie
that these correlations are nonzero only forl 85 l and m8
52m. Note that if the correlations were to be calculated
fixed DrW0 instead of fixed time difference, spherical symm
try would have been violated. Spherical symmetry holds
our case because the probability of having a givenDrW0 for a
given Dt, is a function of the absolute value ofDrW0.

The correlations of the deformation coefficients can
obtained from their basic equation~6! using the correlations
of Qlm ,

^ f lm~ t ! f l 8m8~ t1Dt !& t→`

5E
2`

0

dt1E
2`

Dt

dt2^Qlm~ t1!Ql 2m~ t2!&

3el l (t11t22Dt)d l 8,ldm8,2m . ~32!

Equations~26!, ~30!, ~31!, and ~32! form the calculation
method for the correlations of the deformation coefficien
The method presented here may be hard to implement
merically, because of the many dimensional integration.
the Appendix we describe an algorithm that uses only o
dimensional integration, thus making the computation ta
easier. This algorithm was used to obtain the results p
sented in the figures.
2-6
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The equal time correlations are given by

^ f lm~ t ! f l 8m8~ t !& t→`

5E
0

`

dt8^Qlm~0!Ql 2m~ t8!&
e2l l t8

l l
d l 8,ldm8,2m .

~33!

Note that they still involve nonequal time correlation of t
Qlm’s. To demonstrate the applicability of the method p
sented above, we depict in Fig. 4 the equal time correlati
as a function ofl. This is done for a time correlated rando
flow that has a characteristic correlation lengthj and char-
acteristic decay timet, f(q,t)5Ce2q2j2

e2t/t and for drop-
lets governed by surface tension. Note that the generaliza
to other deformable bodies that obey the conditions of S
II, is quite easy, because the dependence on thel l ’s is
simple. The equal time correlations depend on three dim
sionless parameters:m15R/j, m25Ct2/R5 and m3
5lt/hR (m3 has been written for the special case of
object governed by surface tensionl!. We take m15m2
5m351. The equal time correlations decay exponentia
with increasingl, a behavior that is expected to hold for an
correlation function for values ofl that are larger thanm1.
This suggests that only the first few deformation coefficie
are important to the dynamics of the system.

V. SUMMARY

We have constructed a method to calculate the corr
tions of the deformation coefficientsf l ,m that correspond to
the decomposition of the shape into spherical harmon
given the correlations in space and time of an external
locity field. We did it in two stages. The first was for extern
velocity fields that are uncorrelated in time: Eqs.~14! and
~17!. To demonstrate the applicability of our method we u
it to calculate the correlations of the deformations in the c
of thermal equilibrium. This is done by using the speci

FIG. 4. The correlation of the deformation coefficientsf lm as a
function of integerl, for a time-correlated velocity fieldf(q,t)

5Ce2q2j2
e2t/t andR/j51.
06120
-
s

on
c.

n-

y

s

a-

s,
-

l

e
e

velocity correlations appropriate for that case.~The velocity
correlations were obtained in the past from general con
erations totally unrelated to the problem of deformable o
jects!. In such a way, the problem of thermal deformati
correlations is treated as a special case of our general
proach. The second was for a general external velocity fi
that is correlated both in space and time: Eqs.~26!, ~30!,
~31!, and~32!. We discussed these correlations, used the
sults to construct numerically typical surface shapes,
considered the special case of thermal agitation. In addit
we pointed out from our numerical results that deformat
coefficients withl .m1[R/j seem to decay exponentiall
and therefore are essentially unimportant. This suggests
working with spherical harmonics to investigate systems
deformable bodies is extremely useful for cases wherem1 is
small. For example, to describe a system ofN spheres it
might be enough to use only 12N deformation coefficients
~that correspond tof lm with l 52,3) while for a description
by points on the surface, the number of points needed
describe a single surface may be of the order of a hundr

Our main motivation for developing this method was
build the basic tools for the treatment of a many object s
tem, in which all the objects interact via the host fluid. T
unknown response of the many object system to exte
flows requires the application of the method presented ab
to general random external flows. Therefore we have c
structed the calculation method in such a way as if the c
relation functionf(q,t) is externally given. However, in ad
dition to the main motivation the results presented here
be applied directly to systems of a single deformable ob
in a random flow or to a system of objects in the dilute lim
In fact, we present here a theoretical prediction of the co
lations of the deformations of a single deformable body t
can be checked experimentally. The correlations of the
locity induced in one way or another can be measured in
absence of the object and then when the body is introdu
its deformation can be recorded and the correlation analy
Moreover, the deformations of deformable objects of vario
radii can serve as some measure of velocity correlations
liquid.

APPENDIX: ALGORITHM FOR THE CALCULATION
OF THE DEFORMATION CORRELATIONS

The correlations ofQlm @Eq. ~14! or Eq. ~26!# involve
four dimensional integration while in the integrand, the c
relations of the external velocity at two points@Eq. ~12! or
Eq. ~31!# add a three-dimensional integration. As we can s
the method presented above is very hard to implem
Therefore we must find a way to lower the dimensionality
the integrals. The following algorithm illustrates a method
do so using the partial wave expansion

e2 iqW •(Rr̂)5(
l 50

`

(
m52 l

l

~2 i ! l4p j l~qR!Ylm* ~Vq!Ylm~V!,

~A1!

whereVq is the solid angle in theqW direction andj l is the
spherical Bessel function. The result is a finite express
2-7
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which is composed of a sum of terms where each term
volves only one-dimensional integration. Unfortunately,
though finite, this sum is too long to be presented here~see
our website@32#!.

Using the partial wave expansion, the correlations of
external velocity field on the surface are written explici
using Eqs.~26! and ~31! and the partial wave expansion a

^Qlm~ t !Ql 8m8~ t1Dt !&

5 (
I ,J5x,y,z

(
L,L850

`

(
M52L

L

(
M852L8

L8

~2 i !Li L8~4p!2

3S E dVYlm* ~V!YLM~V! r̂ I D
3S E dV8Yl 8m8

* ~V8!YL8M8
* ~V8! r̂ J8 D

3F E dVqYLM* ~Vq!YL8M8~Vq!S d I ,J2
qIqJ

q2 D G
3S E q2dqe2~q2/6!F(Dt) j L~qR! j L8~qR!f~q,Dt ! D .

~A2!

We can perform the angular integrations, in Eq.~A2!, over
the solid anglesV, V8, and Vq by recalling the following
facts:

~i! r̂ I and r̂ J can be expanded in spherical harmonicsYlm
with l 51.

~ii ! @d I ,J2(qIqJ)/q
2# can be expanded in spherical ha

monics withl 52 andl 50.
~iii ! The expanded expressions~that are composed of in

tegrals of three spherical harmonics! are easily integrated
using the Clebsch-Gordan coefficients. These integ
e

v.

06120
-
-

e

ls

*Yl 1m1
* Yl 2m2

Yl 3m3
vanish unlessu l 12 l 3u< l 2< l 11 l 3, the

sum l 11 l 21 l 3 is even, andm21m35m1. Hence in our
case: the integral overV implies thatL5 l 61 and M2m
5$0,61%. The integral overV8 implies thatL85 l 861 and
M 81m85$0,61%, while from the integral overVq it is easy
to see thatL2L85$062% andM2M 85$0,61,62%.

Hence the expanded sum@32# will have a finite number of
terms~about 100!,

^Qlm~ t !Ql 8m8~ t1Dt !&

[ (
L,L8

M ,M8
I ,J

S z L,L8
M ,M8

I ,J

l ,l 8,m,m8E q2dqe2(q2/6)F(Dt)

3 j L~qR! j L8~qR!f~q,Dt !D , ~A3!

where z is a known algebraic expression and the integ
over q is one dimensional.

In a previous article@10# we have shown how to calculat
numerically the mean-squared displacement@Eq. ~30!# using
the differential equation:

F̈~ t !516pE
0

`

q2dqe2(q2/6)F(t)@ j 0~qR!1 j 2~qR!#2f~q,t !

~A4!

with F(0)50 and Ḟ(0)50 @where the latter holds for al
cases exceptf}d(t)]. F can be obtained by direct step b
step integration.

Finally, the correlation between the deformation coe
cients^ f lm(t) f l 8m8(t1Dt)& are calculated using Eq.~32! for
which the main contribution comes fromt8't and t9't
1Dt. For equal time correlations,Dt50, Eq.~33! for which
the integration is one dimensional applies.
J.
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